Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Rev. Fac. Med. UNAM ; 62(3): 6-19, may.-jun. 2019. tab, graf
Article Es | LILACS-Express | LILACS | ID: biblio-1136647

Resumen Las especies reactivas de oxígeno y nitrógeno son moléculas que se generan a partir del metabolismo celular fisiológico; sin embargo, cuando existe un desequilibrio entre la producción de radicales libres y los mecanismos antioxidantes se genera estrés oxidante. El estrés oxidante se ha asociado con el desarrollo y progresión de enfermedades neurodegenerativas como Alzheimer, Parkinson y Huntington. Dado que el inicio del estrés oxidante es imperceptible y aún no se cuenta con estudios de laboratorio que determinen el impacto de los radicales libres en pacientes con enfermedades neurodegenerativas, es importante dilucidar el papel de estos en los procesos neurodegenerativos con el fin de tener indicios sólidos sobre las posibles dianas de tratamiento y prevenir el daño progresivo en este tipo de enfermedades.


Abstract The reactive oxygen and nitrogen species are molecules that are generated from the physiological cellular metabolism. However, when there is an imbalance between the production of free radicals and the antioxidant mechanisms, oxidative stress is generated. Oxidative stress has been associated with the development and progression of neurodegenerative diseases such as Alzheimer, Parkinson and Huntington, given that the onset of oxidative stress is imperceptible and that there are still no laboratory studies that can determine the impact of free radicals in patients with neurodegenerative diseases. It is important to elucidate the role of free radicals in neurodegenerative processes in order to have solid indications about the possible treatment targets and to prevent the progressive damage in this type of diseases.

2.
J Neuroinflammation ; 16(1): 91, 2019 Apr 17.
Article En | MEDLINE | ID: mdl-30995916

BACKGROUND: During excitotoxic damage, neuronal death results from the increase in intracellular calcium, the induction of oxidative stress, and a subsequent inflammatory response. NADPH oxidases (NOX) are relevant sources of reactive oxygen species (ROS) during excitotoxic damage. NADPH oxidase-2 (NOX-2) has been particularly related to neuronal damage and death, as well as to the resolution of the subsequent inflammatory response. As ROS are crucial components of the regulation of inflammatory response, in this work, we evaluated the role of NOX-2 in the progression of inflammation resulting from glutamate-induced excitotoxic damage of the striatum in an in vivo model. METHODS: The striata of wild-type C57BL/6 J and NOX-2 KO mice (gp91Cybbtm1Din/J) were stereotactically injected with monosodium glutamate either alone or in combination with IL-4 or IL-10. The damage was evaluated in histological sections stained with cresyl violet and Fluoro-Jade B. The enzymatic activity of caspase-3 and NOX were also measured. Additionally, the cytokine profile was identified by ELISA and motor activity was verified by the tests of the cylinder, the adhesive tape removal, and the inverted grid. RESULTS: Our results show a neuroprotective effect in mice with a genetic inhibition of NOX-2, which is partially due to a differential response to excitotoxic damage, characterized by the production of anti-inflammatory cytokines. In NOX-2 KO animals, the excitotoxic condition increased the production of interleukin-4, which could contribute to the production of interleukin-10 that decreased neuronal apoptotic death and the magnitude of striatal injury. Treatment with interleukin-4 and interleukin-10 protected from excitotoxic damage in wild-type animals. CONCLUSIONS: The release of proinflammatory cytokines during the excitotoxic event promotes an additional apoptotic death of neurons that survived the initial damage. During the subsequent inflammatory response to excitotoxic damage, ROS generated by NOX-2 play a decisive role in the extension of the lesion and consequently in the severity of the functional compromise, probably by regulating the anti-inflammatory cytokines production.


Corpus Striatum/enzymology , Corpus Striatum/pathology , Inflammation/enzymology , Inflammation/pathology , NADPH Oxidase 2/metabolism , Animals , Corpus Striatum/immunology , Disease Progression , Glutamic Acid/toxicity , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Cell Mol Neurobiol ; 38(5): 995-1007, 2018 Jul.
Article En | MEDLINE | ID: mdl-29687234

Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.


Mitochondrial Dynamics , Neurons/metabolism , Reactive Oxygen Species/metabolism , Animals , Humans , Models, Biological , Nervous System/metabolism , Nervous System/pathology
4.
Oxid Med Cell Longev ; 2017: 8356175, 2017.
Article En | MEDLINE | ID: mdl-28479956

The 3'-azido-3'-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration.


DNA/biosynthesis , Liver Regeneration/drug effects , Liver/metabolism , Mitosis/drug effects , Oxidative Stress/drug effects , Zidovudine/pharmacology , Animals , Hepatectomy , Liver/surgery , Male , Rats , Rats, Wistar
...